Robot performance
SWEEPER results

Jos Balendonck/Jochen Hemming
Wageningen University & Research, The Netherlands
Growing system

- SWEEPER robot was designed for a single row cropping system and pick from both sides of the plant.
Growing system at “De Tuindershoek & PSKW”

- V-system, double row, 3 stems per sweet-pepper plant
Growing system during experiments

- There was no single row system available for the performance experiments.
- However, we can also evaluate single row results by only taking into account the fruits growing on the front side of the stems.
Crop modifications

- Removal of fruit clusters
- Removal of leaves that largely occlude fruits
Results harvesting experiments

- For single row growing system (when only fruits on front side of stem are evaluated) *
 - 29% of ripe fruit were harvested in commercial crop.
 - 61% of ripe fruit were harvested in modified crop.

- For current double row growing system *
 - 18% of ripe fruit were harvested in commercial crop.
 - 49% of ripe fruit were harvested in modified crop.

* Pleased note that these numbers have been corrected in October 2018 after finalizing the data analysis.

In the earlier version of this document it was stated:

- For single row growing system (when only fruits on front side of stem are evaluated)
 - 30% of ripe fruit were harvested in commercial crop.
 - 62% of ripe fruit were harvested in modified crop.

- For commercial/current growing system
 - 20% of ripe fruit were harvested in commercial crop.
 - 49% of ripe fruit were harvested in modified crop.
Robot speed

- Average time to harvest 1 fruit: **24 seconds** (18 to 25s)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Average Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform movement</td>
<td>4.73</td>
</tr>
<tr>
<td>Fruit localization</td>
<td>3.71</td>
</tr>
<tr>
<td>Obstacle localization</td>
<td>3.02</td>
</tr>
<tr>
<td>Visual servoing</td>
<td>4.03</td>
</tr>
<tr>
<td>Detach fruit</td>
<td>2.22</td>
</tr>
<tr>
<td>Put fruit in container</td>
<td>7.77</td>
</tr>
</tbody>
</table>

for one harvest attempt
For safety reasons the robot was not operated at full speed during experiments.

Laboratory experiments showed that it is possible to harvest one fruit in less than 15 seconds*.

* Excluding platform movement
Lessons learned in the 3.75 years project

■ We made a big step!
 ▪ 61% Success rate* and 4 times faster than CROPS
 ▪ Market introductions requires higher performance

■ We know of the major bottlenecks and further steps:
 ▪ **Technology:** improving detection, reaching, cutting, catching, post-harvest logistics.
 ▪ **Cropping system:** Single-row. Adopted growing system will increase success rate (e.g. fruit and leave pruning)
 ▪ **Sweet pepper variety:** less clusters, better visibility (breeding)

- Pleased note that these numbers have been corrected in October 2018 after finalizing the data analysis.
 In the earlier version of this document it was stated: 62% Success rate
Direct (re)useable technologies and tools

- ROS-Software
 - Control of the robotic arm (path-planning)
 - Robot simulation tools
- 3D Vision detection system
- Obstacle detection (deep-learning)
- Fruit cutting mechanism (patent pending)
- Crop management practices for robotic harvesting
- Economic evaluation tool
- Integration in greenhouse logistic systems
- Use for other crops and applications
Future research topics

- Further technical improvements
 - cycle time, harvest success rate, fruit damage
- Deep-learning
 - Increase detection (also green peppers)
 - To support navigation in unstructured environments
- Human-robot collaboration
 - Robot-assisted human work, safety issues
- Combine robotics with plant breeding expertise
- Crop monitoring (added value)
 - Early detection of diseases/pests and crop quality/yield
www.sweeper-robot.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644313.
Live demonstration

- Challenge to do so for a large audience.
- In the crop there is no space and a bad visibility.
- Because of safety issues – not close to robot
- We will show operating robot also live on screens.
Guidelines for going into the greenhouse

- Machine Safety Guidelines
 - A robot can make sudden and quick movements and it has an end-effector for cutting
 - Keep safe distance from a working robot
 - Only trained people may operate the robot

- Stay on the concrete path (NOT INTO CROP ROWS)

- No food/drinks!

- Follow up instructions of personnel
Program

Info market in the main hall and live demonstrations

16:15 Group 1 live demo
 (invited press only)
16:45 Group 2 live demo
17:00 Group 3 live demo

17:15 Discussion in the main hall
17:30 Food and drinks
18:00 Closure